1 {array} {array type} An array object is a composite object consisting of components which all have the same subtype. The name for a component of an array uses one or more index values belonging to specified discrete types. The value of an array object is a composite value consisting of the values of the components.
2 array_type_definition ::=
unconstrained_array_definition | constrained_array_definition
3 unconstrained_array_definition ::=
array(index_subtype_definition {, index_subtype_definition}) of component_definition
4 index_subtype_definition ::= subtype_mark range <>
5 constrained_array_definition ::=
array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition
6 discrete_subtype_definition ::= discrete_subtype_indication | range
7/2 component_definition ::=
[aliased] subtype_indication
| [aliased] access_definition
8 {expected type (discrete_subtype_definition range) [partial]} For a discrete_subtype_definition that is a range, the range shall resolve to be of some specific discrete type[; which discrete type shall be determined without using any context other than the bounds of the range itself (plus the preference for root_integer — see §8.6).]
9 {index subtype} Each index_subtype_definition or discrete_subtype_definition in an array_type_definition defines an index subtype; {index type} its type (the index type) shall be discrete.
9.a Discussion: {index (of an array)} An index is a discrete quantity used to select along a given dimension of an array. A component is selected by specifying corresponding values for each of the indices.
10 {component subtype} The subtype defined by the subtype_indication of a component_definition (the component subtype) shall be a definite subtype.
10.a Ramification: This applies to all uses of component_definition, including in record_type_definitions and protected_definitions.
12 {dimensionality (of an array)} {one-dimensional array} {multi-dimensional array} An array is characterized by the number of indices (the dimensionality of the array), the type and position of each index, the lower and upper bounds for each index, and the subtype of the components. The order of the indices is significant.
13 A one-dimensional array has a distinct component for each possible index value. A multidimensional array has a distinct component for each possible sequence of index values that can be formed by selecting one value for each index position (in the given order). The possible values for a given index are all the values between the lower and upper bounds, inclusive; {index range} this range of values is called the index range. {bounds (of an array)} The bounds of an array are the bounds of its index ranges. {length (of a dimension of an array)} The length of a dimension of an array is the number of values of the index range of the dimension (zero for a null range). {length (of a one-dimensional array)} The length of a one-dimensional array is the length of its only dimension.
14 An array_type_definition defines an array type and its first subtype. For each object of this array type, the number of indices, the type and position of each index, and the subtype of the components are as in the type definition[; the values of the lower and upper bounds for each index belong to the corresponding index subtype of its type, except for null arrays (see §3.6.1)].
15 {constrained (subtype)} {unconstrained (subtype)} An unconstrained_array_definition defines an array type with an unconstrained first subtype. Each index_subtype_definition defines the corresponding index subtype to be the subtype denoted by the subtype_mark. [{box (compound delimiter) [partial]} The compound delimiter <> (called a box) of an index_subtype_definition stands for an undefined range (different objects of the type need not have the same bounds).]
16 {constrained (subtype)} {unconstrained (subtype)} A constrained_array_definition defines an array type with a constrained first subtype. Each discrete_subtype_definition defines the corresponding index subtype, as well as the corresponding index range for the constrained first subtype. {constraint (of a first array subtype) [partial]} The constraint of the first subtype consists of the bounds of the index ranges.
16.a Discussion: Although there is no namable unconstrained array subtype in this case, the predefined slicing and concatenation operations can operate on and yield values that do not necessarily belong to the first array subtype. This is also true for Ada 83.
17 The discrete subtype defined by a discrete_subtype_definition is either that defined by the subtype_indication, or a subtype determined by the range as follows:
18.a Reason: This ensures that indexing over the discrete subtype can be performed with regular Integers, rather than only universal_integers.
18.b Discussion: We considered doing this by simply creating a “preference” for Integer when resolving the range. {Beaujolais effect [partial]} However, this can introduce Beaujolais effects when the simple_expressions involve calls on functions visible due to use clauses.
20 {nominal subtype (of a component) [partial]} The component_definition of an array_type_definition defines the nominal subtype of the components. If the reserved word aliased appears in the component_definition, then each component of the array is aliased (see §3.10).
21 {elaboration (array_type_definition) [partial]} The elaboration of an array_type_definition creates the array type and its first subtype, and consists of the elaboration of any discrete_subtype_definitions and the component_definition.
22/2 {elaboration (discrete_subtype_definition) [partial]} The elaboration of a discrete_subtype_definition that does not contain any per-object expressions creates the discrete subtype, and consists of the elaboration of the subtype_indication or the evaluation of the range. The elaboration of a discrete_subtype_definition that contains one or more per-object expressions is defined in §3.8. {elaboration (component_definition) [partial]} The elaboration of a component_definition in an array_type_definition consists of the elaboration of the subtype_indication or access_definition. The elaboration of any discrete_subtype_definitions and the elaboration of the component_definition are performed in an arbitrary order.
NOTES
23 (43) All components of an array have the same subtype. In particular, for an array of components that are one-dimensional arrays, this means that all components have the same bounds and hence the same length.
24 (44) Each elaboration of an array_type_definition creates a distinct array type. A consequence of this is that each object whose object_declaration contains an array_type_definition is of its own unique type.
25 Examples of type declarations with unconstrained array definitions:
26
27 Examples of type declarations with constrained array definitions:
28
29 Examples of object declarations with array type definitions:
30/2
30.a {extensions to Ada 83} The syntax rule for component_definition is modified to allow the reserved word aliased.
30.b The syntax rules for unconstrained_array_definition and constrained_array_definition are modified to use component_definition (instead of component_subtype_indication). The effect of this change is to allow the reserved word aliased before the component subtype_indication.
30.c A range in a discrete_subtype_definition may use arbitrary universal expressions for each bound (e.g. –1 .. 3+5), rather than strictly "implicitly convertible" operands. The subtype defined will still be a subtype of Integer.
30.d We introduce a new syntactic category, discrete_subtype_definition, as distinct from discrete_range. These two constructs have the same syntax, but their semantics are quite different (one defines a subtype, with a preference for Integer subtypes, while the other just selects a subrange of an existing subtype). We use this new syntactic category in for loops and entry families.
30.e The syntax for index_constraint and discrete_range have been moved to their own subclause, since they are no longer used here.
30.f The syntax rule for component_definition (formerly component_subtype_definition) is moved here from RM83-3.7.
30.g/2 {extensions to Ada 95} Array components can have an anonymous access type.
30.h/2 The prohibition against unconstrained discriminated aliased components has been lifted. It has been replaced by a prohibition against the actual troublemakers: general access discriminant constraints (see §3.7.1).
30.i/2 Corrigendum: Added wording to allow the elaboration of per-object constraints for constrained arrays.