AAda Compiler Parser Expression

3
Feb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
--with aada_compiler_token_package;
--with aada_compiler_node_package;
with aada_compiler_error_package;
--with aada_compiler_parser_package;
 
--use aada_compiler_token_package;
--use aada_compiler_node_package;
use aada_compiler_error_package;
--use aada_compiler_parser_package;
 
package body aada_compiler_parser_expression is
 
-- Support for Ada expressions includes the following:
--
-- The break-up shown below is the same as how the expressions are
-- implemented. I made additions to accommodate requirements that
-- are not well defined by the default Ada BNF like rules.
--
-- Note: the Boolean 'true' and 'false' are functions defined in:
-- type Boolean is (false, true);
--
-- expr/terminal:
-- "null"
-- "null record"
-- "<>" [for record_component_association]
-- string [string or named operator]
-- character
-- integer
-- float
-- identifier [name]
-- "(" expr/list ")" [aggregate or grouping]
-- "new" expr/primary [allocator]
--
-- expr/primary:
-- expr/terminal
-- expr/primary "(" expr/list ")" [function, array dereference, slice]
-- expr/primary "." expr/terminal [prefix "." selector_name]
-- expr/primary ".all"
-- expr/primary "'(" expr ")" [qualified expression]
-- expr/primary "'" expr/terminal [attribute_reference]
-- expr/primary "'access" expr/terminal [attribute_reference]
-- expr/primary "'delta" [attribute_reference]
-- expr/primary "'digits" [attribute_reference]
-- expr/primary "'range" [attribute_reference]
-- expr/primary "'range(" expr ")" [attribute_reference]
--
-- expr/factor:
-- expr/primary "**" expr/primary
-- "abs" expr/primary
-- "not" expr/primary
--
-- expr/term:
-- expr/factor "*" expr/factor
-- expr/factor "/" expr/factor
-- expr/factor "mod" expr/factor
-- expr/factor "rem" expr/factor
--
-- expr/simple:
-- "+" expr/term
-- "-" expr/term
-- expr/term "+" expr/term
-- expr/term "-" expr/term
-- expr/term "&" expr/term
--
-- Ranges do not include relations making the "in" and "not in"
-- operators look more logical. see 3.5.4(3) and 4.4(15b)
--
-- expr/range:
-- expr/simple
-- expr/simple ".." expr/simple
--
-- expr/relation:
-- expr/simple
-- expr/simple "=" expr/simple
-- expr/simple "/=" expr/simple
-- expr/simple "<" expr/simple
-- expr/simple "<=" expr/simple
-- expr/simple ">" expr/simple
-- expr/simple ">=" expr/simple
-- expr/simple "in" expr/range
-- expr/simple "not in" expr/range
--
-- expr:
-- expr/relation
-- expr/relation "and" expr/relation
-- expr/relation "and then" expr/relation
-- expr/relation "or" expr/relation
-- expr/relation "or else" expr/relation
-- expr/relation "xor" expr/relation
--
-- lists are not viewed as expression like in C, but it makes sense to read them here
-- since we need to support aggregates that use a list and we also have to support
-- the lists of parameters in function calls
--
-- expr/component_association:
-- expr
-- expr "=>" expr
-- expr "with" expr/list [extension_aggregate]
-- "others =>" expr
-- expr/simple ".." expr/simple [first expression must be simple too!]
--
-- expr/list:
-- expr/component_association
-- expr/component_association "," expr/component_association
 
 
procedure expr_primary(p: in out compiler_parser_type;
                       t: in out compiler_token_type;
                       n: out compiler_node_handle);
 
 
procedure expr_terminal(p: in out compiler_parser_type;
                        t: in out compiler_token_type;
                        n: out compiler_node_handle) is
  token: ada_token;
  c: compiler_node_handle;
begin
  token := get_token_token(t);
 
  case token is
  when token_box | token_string | token_character | token_integer
     | token_float | token_identifier =>
    -- all of those are terminal tokens defined as is
    create_node(n, t);
    next_token(p, t);
 
  when token_null =>
    -- "null" token
    create_node(n, t);
    next_token(p, t);
    token := get_token_token(t);
    if token = token_record then
      -- this is a "null record" token instead
      set_token_token(t, token_null_record);
      init(n, t);
    end if;
 
  when token_open_parenthesis =>
    -- read an expression list and then expect ")"
    create_node(n, t, 1);
    next_token(p, t);
    expression(p, t, c);
    parent(c, n);
    token := get_token_token(t);
    if token /= token_close_parenthesis then
      error(p, expected_close_parenthesis_error, t,
            "expected a "")"" here; or there is a missing operator");
    else
      -- skip the ")"
      next_token(p, t);
    end if;
 
  when token_new =>
    -- followed by a primary expression defining what is allocated
    create_node(n, t, 1);
    next_token(p, t);
    expr_primary(p, t, c);
    parent(c, n);
 
  when others =>
    -- we've got a problem since nothing captured this token!
    -- we leave it alone since it could be a token from after
    -- (i.e. the '*' in "expr '*' expr" where the first expr
    -- is missing.)
    error(p, unexpected_token_in_expression_error, t,
          "unexpected token in an expression");
 
  end case;
end expr_terminal;
 
 
procedure expr_primary(p: in out compiler_parser_type;
                       t: in out compiler_token_type;
                       n: out compiler_node_handle) is
  token: ada_token;
  q: compiler_token_type;
  l, r: compiler_node_handle;
begin
  expr_terminal(p, t, l);
 
  loop
    token := get_token_token(t);
    case token is
    when token_open_parenthesis =>
      -- expr(expr)
      -- note that "call" is a bit "abusive" since this could be
      -- an array dereference and those don't actually generate a 
      -- call per se; it also represets a cast
      set_token_token(t, token_call);
      create_node(n, t);
      parent(l, n);
      next_token(p, t);
      expr_list(p, t, r);
      parent(r, n, 2);
      token := get_token_token(t);
      if token /= token_close_parenthesis then
        error(p, expected_close_parenthesis_error, t,
              "expected a "")"" here; or there is a missing comma");
      else
        -- skip the ")"
        next_token(p, t);
      end if;
 
    when token_period =>
      -- expr.expr
      create_node(n, t, 2);
      parent(l, n);
      next_token(p, t);
      token := get_token_token(t);
      if token = token_all then
        -- special case of expr.all
        -- (we could also create a new node to use only 1 child)
        -- IMPORTANT: now we have a token_all instead of a token_period
        set_token_token(t, token_all);
        init(n, t);
        next_token(p, t);
      else
        expr_primary(p, t, r);
        parent(r, n, 2);
      end if;
 
    when token_apostrophe =>
      -- expr'(expr), expr'expr, expr'access/delta/digits/range[(expr)]
      next_token(p, q);
      token := get_token_token(q);
      case token is
      when token_open_parenthesis =>
        -- expr'(expr)
        -- this is a type qualification
        -- (note that when others => would also be capable of reading this
        -- expression; but it would not automatically mark it as a qualifier)
        set_token_token(t, token_qualify);
        create_node(n, t, 2);
        parent(l, n);
        next_token(p, t);
        expression(p, t, r);
        parent(r, n, 2);
 
      when token_access | token_delta | token_digits | token_range =>
        -- expr'expr
        -- this is a "normal" attribute, it just happen to use a reserved word
        -- the range(expr) is supported by looping (although the loop really
        -- gives use a range(expr/list) but we can check the validity later.)
        create_node(n, t, 2);
        parent(l, n);
        create_node(r, q);
        parent(r, n);
        next_token(p, t);
 
      when others =>
        -- expr'expr
        create_node(n, t, 2);
        parent(l, n);
        -- what can appear after an apostrophy is pretty limited
        expr_terminal(p, t, r);
        parent(r, n, 2);
 
      end case;
 
    when others =>
      n := l;
      return;
 
    end case;
    l := n;
  end loop;
 
end expr_primary;
 
 
-- no loop in factor
procedure expr_factor(p: in out compiler_parser_type;
                      t: in out compiler_token_type;
                      n: out compiler_node_handle) is
  token: ada_token;
  l, r: compiler_node_handle;
begin
  token := get_token_token(t);
  if token = token_abs
  or else token = token_not then
    -- handles abs & not
    create_node(n, t);
    expr_primary(p, t, r);
    parent(r, n);
  else
    expr_primary(p, t, l);
    token := get_token_token(t);
    if token = token_exponential then
      create_node(n, t, 2);
      parent(l, n);
      expr_primary(p, t, r);
      parent(r, n, 2);
    else
      n := l;
    end if;
  end if;
end expr_factor;
 
 
 
procedure expr_term(p: in out compiler_parser_type;
                    t: in out compiler_token_type;
                    n: out compiler_node_handle) is
  token: ada_token;
  l, r: compiler_node_handle;
begin
  expr_factor(p, t, l);
  loop
    token := get_token_token(t);
    case token is
    when token_multiply | token_divide | token_mod | token_rem =>
      -- a simple relation is composed of two terms
      create_node(n, t, 2);
      parent(l, n);
      next_token(p, t);
      expr_factor(p, t, r);
      parent(r, n, 2);
 
    when others =>
      n := l;
      return;
 
    end case;
    l := n;
  end loop;
end expr_term;
 
 
procedure expr_simple(p: in out compiler_parser_type;
                     t: in out compiler_token_type;
                     n: out compiler_node_handle;
                     bin_op_only: in boolean := false) is
  token: ada_token;
  l, r: compiler_node_handle;
begin
  if not bin_op_only then
    token := get_token_token(t);
    if token = token_plus or else token = token_minus then
      -- in this case we are not going to loop
      -- to add a + or - on the right hand, use parenthesis
      if token = token_plus then
        -- IMPORTANT: We cannot optimize the identity here
        --            since that could be a user function
        set_token_token(t, token_identity);
      else
        set_token_token(t, token_negate);
      end if;
      create_node(n, t, 1);
      next_token(p, t);
      expr_simple(p, t, r, true);
      parent(r, n);
      return;
    end if;
  end if;
 
  expr_term(p, t, l);
  loop
    token := get_token_token(t);
    case token is
    when token_plus | token_minus | token_concatenate =>
      -- a simple relation is composed of two terms
      create_node(n, t, 2);
      parent(l, n);
      next_token(p, t);
      expr_term(p, t, r);
      parent(r, n, 2);
 
    when others =>
      n := l;
      return;
 
    end case;
    l := n;
  end loop;
 
end expr_simple;
 
 
procedure expr_range(p: in out compiler_parser_type;
                     t: in out compiler_token_type;
                     n: out compiler_node_handle) is
  token: ada_token;
  l, r: compiler_node_handle;
begin
  -- a range expression doesn't loop
  -- expr .. expr
  expr_simple(p, t, l);
  token := get_token_token(t);
  if token = token_double_dot then
    create_node(n, t, 2);
    parent(l, n);
    next_token(p, t);
    expr_simple(p, t, r);
    parent(r, n, 2);
  else
    n := l;
  end if;
end expr_range;
 
 
-- relations do not loop, use parenthesis if necessary
procedure expr_relation(p: in out compiler_parser_type;
                        t: in out compiler_token_type;
                        n: out compiler_node_handle) is
  token: ada_token;
  q: compiler_token_type;
  l, r, d, e: compiler_node_handle;
  special_token: compiler_token_type;
begin
  expr_simple(p, t, l);
  token := get_token_token(t);
  case token is
  when token_equal | token_inequality | token_less
       | token_less_equal | token_greater | token_greater_equal =>
    -- a simple relation
    create_node(n, t, 2);
    parent(l, n);
    next_token(p, t);
    expr_simple(p, t, r);
    parent(r, n, 2);
 
  when token_in =>
    -- read a range in this case
    create_node(n, t, 2);
    parent(l, n);
    next_token(p, t);
    expr_range(p, t, r);
    parent(r, n, 2);
 
  when token_not =>
    -- here the "not" is expected to be a negation for the "in" keyword
    -- however, it could be that the user forgot to enter the proper
    -- keyword before it, so we do a look ahead
    next_token(p, q);
    token := get_token_token(q);
    if token = token_in then
      -- valid "not in" relation!
      set_token_token(t, token_not_in);
      create_node(n, t, 2);
      parent(l, n);
      next_token(p, t);
      expr_range(p, t, r);
      parent(r, n, 2);
    else
      -- first we read the next expression, if it ends with ".."
      -- then we assume that "in" is missing, otherwise we assume
      -- that one of "and", "or" or "xor" is missing ahead
      special_token := t; -- save t's position info
      create_node(n, t, 2);
      parent(l, n);
      unget_token(p, q);
      expr_simple(p, t, r);
      token := get_token_token(t);
      if token = token_double_dot then
        -- the keyword "in" is missing since we've got a range here
        error(p, expected_in_keyword_error, special_token,
              "expected ""in"" after ""not""");
        create_node(d, t, 2);
        parent(r, d);
        expr_simple(p, t, e);
        parent(e, d, 2);
        parent(d, n, 2);
        set_token_token(special_token, token_not_in);
        init(n, special_token);
      else
        -- TODO:
        -- we need to test whether the expression in 'r' ends with
        -- the "'range" attribute, if so, then we've got a range
        -- and this means the "in" keyword is missing
        error(p, expected_relation_keyword_before_not, special_token,
              "expected ""and"", ""or"","
            & " ""xor"" in front of ""not""");
        parent(r, n, 2);
        -- assume "and" so we can go on with a valid tree
        set_token_token(special_token, token_and);
        init(n, special_token);
      end if;
    end if;
 
  when others =>
    n := l;
    return;
 
  end case;
end expr_relation;
 
procedure expression(p: in out compiler_parser_type;
                     t: in out compiler_token_type;
                     n: out compiler_node_handle) is
  token: ada_token;
  l, r: compiler_node_handle;
begin
  expr_relation(p, t, l);
  loop
    token := get_token_token(t);
    case token is
    when token_and =>
      create_node(n, t, 2);
      next_token(p, t);
      token := get_token_token(t);
      if token = token_then then
        -- change the token type
        set_token_token(t, token_and_then);
        init(n, t);
        next_token(p, t);
      end if;
 
    when token_or =>
      create_node(n, t, 2);
      next_token(p, t);
      token := get_token_token(t);
      if token = token_else then
        -- change the token type
        set_token_token(t, token_or_else);
        init(n, t);
        next_token(p, t);
      end if;
 
    when token_xor =>
      create_node(n, t, 2);
      next_token(p, t);
 
    when others =>
      -- we're done here
      n := l;
      return;
 
    end case;
    parent(l, n);
    expr_relation(p, t, r);
    parent(r, n, 2);
    l := n;
  end loop;
end expression;
 
procedure expr_component_association(p: in out compiler_parser_type;
                                     t: in out compiler_token_type;
                                     n: out compiler_node_handle) is
  token: ada_token;
  a, b: compiler_node_handle;
begin
  token := get_token_token(t);
  if token = token_others then
    -- special case of others => expr
    create_node(n, t);
    next_token(p, t);
    token := get_token_token(t);
    if token = token_arrow then
      next_token(p, t);
    else
      error(p, expected_arrow_error, t,
            "expected ""=>"" after others in a list of expressions");
    end if;
    expression(p, t, a);
    parent(a, n);
    return;
  end if;
 
  expression(p, t, a);
  token := get_token_token(t);
  case token is
  when token_arrow | token_with | token_double_dot =>
    -- expr => expr, expr with expr, expr .. expr
    create_node(n, t, 2);
    parent(a, n);
    next_token(p, t);
    expression(p, t, b);
    parent(b, n, 2);
 
  when others =>
    -- just an expression
    n := a;
 
  end case;
end expr_component_association;
 
procedure expr_list(p: in out compiler_parser_type;
                    t: in out compiler_token_type;
                    n: out compiler_node_handle) is
  token: ada_token;
  a, b: compiler_node_handle;
begin
  -- create a list object with 1 child
  -- the children are then linked together
  set_token_token(t, token_list);
  create_node(n, t, 1);
  expr_component_association(p, t, a);
  parent(a, n);
  loop
    token := get_token_token(t);
    exit when token /= token_comma;
    next_token(p, t);
    expr_component_association(p, t, b);
    next(a, b);
    a := b;
  end loop;
end expr_list;
 
 
end aada_compiler_parser_expression;
 
-- vim: ts=2 sw=2 et syntax=ada
Project aada v1.0-338 (Project id #3)
Process Done (Last compiled on 2012/01/13 01:21:26)
Description Alexis Ada Compiler written in Ada (my first attempt was in C++ which is not correct for an Ada compiler.)